Ремонт холодильников:
В Москве:
+7 (495) 324-67-85
В Санкт-Петербурге:
+7 (812) 604-57-64
- 1. Таймер для холодильника на PIC-контроллере
- 2. Таймер для защиты холодильника при включении
- 3. Электронный таймер ТИМ-01
- 4. Схема дефростера холодильника
- 5. Схемы холодильников Ariston
- 6. Видео: как работает таймер в холодильнике Ноу Фрост
- 7. Видео: как проверить таймер оттаивания DBZD-1430-1
- 8. Видео: таймер оттайки Тим-01
- 9. Видео: принцип работы таймера Тим-01
Таймер для холодильника на PIC-контроллере
Неисправность холодильника для многих домохозяек настоящее бедствие. Всего несколько часов простоя и большинство его содержимого можно выкидывать на помойку. А стоимость нового «хранителя» продуктов не всем по карману. В моей практике я часто встречался со случаями неисправности холодильников, когда агрегат остается в исправном состоянии, а термостат (устройство автоматически запускающее компрессор при недостаточной температуре в камере) выходит из строя. Это касается, в основном, старых советских холодильников, где установлены фреоновые термостаты. Поиск таких термостатов в настоящее время затруднителен, так как они уже не выпускаются. Таким образом получается, что из-за такой незначительной неисправности весь холодильник непригоден к эксплуатации. Ведь если закоротить контакты неисправного термостата, то агрегат будет работать без перерыва, что в итоге приведет к его перегреву и выходу из строя.
Поскольку я сам являюсь обладателем такого «советского» холодильника, неизбежно начал подумывать о возможности его эксплуатации без термостата. Собирать устройство, способное контролировать температуру внутри камеры мне не представлялось возможным, поскольку измерение температуры при помощи электронных датчиков и дальнейшая обработка полученных результатов с помощью микроконтроллера задача довольно сложная. А вот собрать устройство-таймер, которое будет включать и выключать компрессор холодильника по заранее установленной программе (которая может меняться в зависимости от желания владельца) дело не такое уж сложное.
Итак, взяв за основу полный цикл работы холодильного агрегата 1 час, я прикинул сколько времени он должен работать, а сколько отдыхать. Трех режимов работы будет вполне достаточно:
Режим работы | Время работы, мин | Время простоя, мин |
«норма» | 10 | 50 |
«сильно» | 20 | 40 |
«очень сильно» | 30 | 30 |
Кроме того, устройство должно обладать кнопкой для выбора режимов работы, и индикаторами, отображающими выбранный режим и состояние устройства на данный момент времени.
Как видно из схемы- основу ее составляет пик контроллер младшего семейства «Microchip». Устройство питается от параметрического стабилизатора с напряжением стабилизации 5-6 В. Пульсации и помехи по питанию гасятся емкостями, включенными параллельно стабилитрону. Светодиоды индицируют режим работы устройства: во время работы компрессора холодильника один из светодиодов мигает с частотой 1 Гц, в режиме простоя этот же светодиод горит непрерывно. Кнопка «режим» служит для выбора режима работы устройства. Первоначально устройство запрограммированно на режим «норма», соответственно его работу сопровождает светодиод «норма». При кратковременном нажатии на кнопку происходит циклическое переключение на следующие режимы работы – «сильно», «очень сильно», при этом происходит переключение индикации на светодиоды «сильно» и далее «очень сильно». При переключении режима «очень сильно» на следующий происходит возврат к режиму «норма». Особенность программы еще состоит и в том, что после выбора нового режима работы, устройство входит в него только после завершения текущего режима, т.е. с завершением полного цикла работы. Это сделано для того что бы лишний раз не перегружать компрессор при выборе нового режима работы.
Исполнительным устройством в данной схеме является реле на рабочее напряжение 110 – 220 В, если напряжение реле менее 220 В, его необходимо включить последовательно с токоограничивающим резистором R*. В моем случае установлено реле на 110 В и резистор на 16 кОм (2 Вт).
Конструктивно устройство может быть выполнено в виде коробочки плоской формы, на передней панели которой находится кнопка выбора режима работы и три светодиодных индикатора.
Устройство подключается к агрегату холодильника минуя термостат, т.е. контакты термостата закорачиваются, а в разрыв цепи питания компрессора включаются контакты реле.
Устройство может располагаться как внутри холодильника (в моторном отсеке) – в этом случае переключение режимов работы будет невозможно, и как отдельная приставка, например на холодильнике.
Теперь кратко о программе:
PIC работает от внутреннего тактового генератора на 4 МГц
к порту кнопки подключен внутренний подтягивающий резистор, поэтому в разомкнутом состоянии на порту присутствует высокая логика
временные задержки построены с помощью таймера, который работает на прерывание по переполнению, и циклических счетчиков, которые осуществляют подсчет секунд, минут и часов.
модификация режимов работы происходит в самой программе (без использования отдельных подпрограмм), это было сделано для того, что бы не нарушать контекстность выполнения программы при выходе из прерывания. Поэтому и получилось немного «замудрено»)
Текст программы в MPLAB и шестнадцатеричный файл для прошивки контроллера можно скачать здесь:
Таймер для защиты холодильника при включении
Автор рассказывает об одной из распространенных причин выхода из строя бытовых холодильников и предлагает два варианта устройства для их защиты.
В инструкциях по эксплуатации некоторых бытовых холодильников, например, STINOL, сказано, что их повторное включение в сеть допускается не ранее чем через 4…5 мин после отключения. Это время необходимо для конденсации и спада давления хладоагента. В противном случае пусковая нагрузка на электродвигатель компрессора слишком велика, что вызывает перегрев его обмоток. Именно в этой ситуации отказ двигателя наиболее вероятен.
Выполнить указанное требование без применения дополнительных устройств защиты невозможно. Бытовой холодильник включен круглосуточно. Чтобы вывести его из строя, бывает достаточно обычного для наших электросетей даже кратковременного перебоя подачи электроэнергии, особенно ночью или когда отсутствуют хозяева.
В таких случаях необходимо автоматически задерживать включение холодильника приблизительно на 5 мин после восстановления напряжения в сети. Именно эту функцию может выполнить таймер, схема которого показана на рис. 1.
Принципиальная схема
Он работает следующим образом. В первый момент после подачи сетевого напряжения конденсатор С3 разряжен и начинается его зарядка через резистор R3. Логический элемент DD1.1 служит пороговым устройством. Пока напряжение на его входах ниже порога переключения, на его выходе — высокий, а на выходе элемента DD1.2 — низкий логический уровень.
Транзистор VТ1 закрыт, ток в его эмиттерной цепи отсутствует. Поэтому тиристоры оптронов U1 и U2, а с ними и симистор VS1 закрыты. Цепь питания холодильника разомкнута.
Приблизительно через 5 мин напряжение на конденсаторе С3 достигнет уровня, при котором начнется изменение состояния элементов DD1.1, DD1.2 и открывание транзистора УТ1. Благодаря положительной обратной связи через резисторы R4 и R5 этот процесс развивается лавинообразно, ток через светодиоды оптронов U1, U2 нарастает скачком.
В результате фототиристоры оптронов поочередно открываются в начале каждого полупериода сетевого напряжения, а протекающий через них и резистор R6 ток открывает симистор VS1. Холодильник подключен к сети.
Рис. 1. Принципиальная схема таймера для холодильника.
Если напряжение в сети исчезнет более чем на 1 2 с, конденсаторы С2 и С3 успеют разрядиться (последний — через диод VD6). Резистор R2 служит для ускорения процесса разрядки С появлением напряжения описанный выше процесс повторится и холодильник будет включен лишь спустя 5 мин.
Узел питания таймера собран по бес-трансформаторной схеме с гасящим конденсатором С1. Резистор R1 ограничивает бросок тока при включении. Выпрямленное диодным мостом VD1 — VD4 напряжение стабилизировано с помощью последовательно соединенных светодиода HL1 и стабилитрона VD5. Свечение светодиода является признаком наличия напряжения в сети
Таймер собран в корпусе от блока питания БП2-3 (так называемого сетевого адаптера), которым комплектовались некоторые микрокалькуляторы. Розетку для подключения холодильника укрепляют на корпусе блока со стороны, противоположной сетевой вилке, а внутри корпуса — печатную плату из фольгированного стеклотекстолита, показанную на рис. 2.
Детали и конструкция
Микросхему К561ЛЕ5 без какой-либо корректировки схемы можно заменить на К561ЛА7. Транзистор VT1 — серий КТ312, КТ315 с любыми буквенными индексами.
В качестве VD1-VD4 пригодны подходящие по габаритам маломощные диоды с допустимым выпрямленным током не менее 30 мА, а замену VD6 следует выбирать с малым обратным током, например, КД102Б, КД104А. Светодиод HL1 — любого цвета свечения с максимальным током 30 мА. Прямое падение напряжения на светодиодах разного типа может различаться на 1 …2 В, что следует учитывать при выборе стабилитрона VD5. Суммарное напряжение на стабилитроне и светодиоде не должно выходить за пределы 10…15В.
Рис. 2. Печатная плата для устройства защиты холодильника.
Конденсатор С1 — К73-17, С2 — любой оксидный, С3 — оксидный с малым током утечки, например, серии К52. Все резисторы — МЯТ или С2-33 указанной на схеме мощности Симистор VS1 (его класс по напряжению должен быть не менее 4) снабжают алюминиевым теплоотводом площадью в несколько квадратных сантиметров и крепят к плате, например, эпоксидным клеем.
Налаживание
Налаживание таймера сводится к установке требуемой задержки срабатывания подборкой резистора R3. Следует учитывать, что чрезмерное увеличение сопротивления этого резистора ведет к непостоянству задержки, вызванному влиянием токов утечек конденсатора С3 и между проводниками печатной платы.
Ток утечки оксидного конденсатора, длительное время не находившегося под напряжением, обычно увеличен. Поэтому обязательно проверьте задержку после того, как таймер непрерывно проработает не менее суток, и при необходимости установите ее еще раз.
Таймер на микросхеме К561ЛА7
Аналогичный по назначению и принципу действия таймер можно собрать по схеме, показанной на рис. 3. Его основное отличие в том, что нагрузку (холодильник) коммутируют не симистором, а с помощью реле К1. Триггер, переключающийся при достижении напряжением на конденсаторе С2 порогового уровня, образуют в данном случае элементы DD1 1 и DD1 4. Параллельно соединенные элементы DD1.2, DD1.3 — буферный каскад, управляющий электронным ключом на транзисторе VT1, в коллекторную цепь которого включена обмотка реле К1.
Рис. 3. Схема устройства защиты холодильника — таймера на микросхеме К561ЛА7.
Резистор R5 нужен для ускорения разрядки конденсаторов после выключения сетевого напряжения. Протекающего через него тока недостаточно для удержания реле К1 в сработавшем состоянии. Трансформатор Т1, диодный мост VD1 и конденсатор С1 — узел питания таймера.
Светодиоды НL1 и НL2 служат для индикации наличия напряжения в сети и состояния таймера. Если ни один из них не горит, напряжение в сети отсутствует. С момента появления напряжения и до включения холодильника горит светодиод HL1. Затем он гаснет, и зажигается светодиод НL2.
Рис. 4. Печатная плата таймера на микросхеме.
Подбирая реле, следует учитывать, что его контакты должны быть рассчитаны на коммутацию тока в несколько ампер, потребляемого холодильником в пусковом режиме. В авторском варианте таймера применено реле РЭН-18, паспорт РХ4.564.706. Трансформатор Т1 — с напряжением на вторичной обмотке 6 В при токе нагрузки 300 мА.
Выпрямленное напряжение на конденсаторе С1 составило 7…8 В. Если имеется реле с большим напряжением срабатывания, напряжение на вторичной обмотке трансформатора следует соответственно увеличить. Однако при увеличении выпрямленного напряжения сверх 15 В микросхему DD1 следует питать через простейший стабилизатор с выходным напряжением не более указанного. Выход стабилизатора обязательно зашунтируйте резистором 1 кОм, создающим цепь разрядки конденсатора С2.
Таймер собран на плате из односторонне фольгированного стеклотекстолита. Монтаж почти всех цепей выполнен печатным способом, причем печатные проводники находятся вблизи одного из краев платы шириной 80 мм (рис. 4). С остальной ее поверхности фольга удалена, там установлены реле К1 и трансформатор Т1.
Плату закрывают крышкой из изоляционного материала с отверстиями под светодиоды и розеткой для подключения холодильника. Налаживание таймера сводится к установке требуемой выдержки подбором сопротивления резистора R1.
Электронный таймер ТИМ-01
Электронный таймер ТИМ- 01 (применяется в моделях с охлаждением морозильной и холодильной камеры от одного испарителя ( No Frost, Full Frost, Total Frost — Индезит, Аристон)
Цикл оттайки — через 8 часов работы компрессора (время стоянки не учитывается). Оттайка начинается при условии – температура в морозильной камере не выше – 10 С Окончание оттайки – при температуре на термореле +10С. Время оттайки зависит от количества инея на испарителе. При первом включении холодильника, при достижении температуры в морозильной камере -10 С, таймер входит в режим оттайка – используется для контроля работы системы оттайки. Оттайка начинается при условии – температура в морозильной камере не выше – 10 С. Окончание оттайки – при температуре на термореле +10С. Время оттайки зависит от количества инея на испарителе
Параметры для проверки:
- ручная установка режима оттайки
- время паузы
- включение холодильного режима
Принципиальная схема таймера оттайки ТИМ-01
Проверяют в следующей последовательности:
- При замкнутых контактах теплового реле, когда температура в морозильной камере ниже – 8 (+/- 5 С) ( для реле ТАБ –Т) или – 10 (+\- 3) (для COMBI-100 b 261N), нажимают кнопку таймера. При этом таймер должен перевести систему «NO FROST» в режим оттайки (отключается компрессор и включаются тэны).
- Отсоединяют провод термопредохранителя от коммутационной колодки, тем самым имитируется размыкание контактов теплового реле, после этого если используется таймер ТИМ -01 – компрессор включается через 7 (+\- 3) мин.
- После этого восстанавливают целостность схемы холодильника. При необходимости заменяют дефектный таймер
Цикл работы таймера оттайки ТИМ-01
Технические характеристики таймеров оттайки серии ТИМ-01
Ремонт таймера ТИМ 01 холодильников NoFrost
Электронные таймеры оттайки можно условно разделить на 2 большие группы — ТИМ-01 на микросхеме с маркировкой «ХМ3» и ТЭУ-01 на «Аttiny13»
Понятно, что замена перегоревших резисторов или залипшей кнопки не тема для статьи. Хочу поделиться способом оживления именно микросхем таймера.
И если неисправные таймеры на «тиньке» со сгоревшим контроллером, как правило, отправляются сразу в мусор, то часто таймер оттайки типа ТИМ 01 можно вернуть к полноценной жизни.
Если плата вашего неисправного таймера выглядит вот так:
И все детали исправны, а сигнал на включение оттайки с выхода 3 микросхемы ХМ3 не поступает, скорее всего, в обрыве коллекторный резистор.
Внешний резистор номиналом от 4.7кОм до 5.1 кОм с 8-й ножки на 3-ю излечивает дефект микросхемы. По-видимому, она КМОП логики и не рассчитана на подключенный к её выходу 3 резистор 1 кОм.
Более 10 шт восстановленных таймеров исправно трудятся уже 2 года.
P.S. Если выход 3 помер окончательно и бесповоротно, выход 2 этой же микросхемы имеет инверсный сигнал, и его тоже можно использовать, но мне такие не попадались.
Дополнительный резистор отмечен *
Схема дефростера холодильника
Что такое дефростер
Начнем с теории. В общем смысле, дефростером называют любое устройство для ускоренной разморозки продуктов. Строго говоря, дефростером может быть и камера холодильника, оснащенная нагревателем и аппаратом для усиленной циркуляции воздуха, и специальный датчик.
Терминологическая неопределенность вызвана «трудностями перевода». Зарубежные холодильщики используют понятие «дефрост» для обозначения нагревателя («defrost heater») и термореле, т.е. датчика («defrost thermostat»). Мы будем рассматривать дефростер именно с позиций датчика.
Итак, дефростер в холодильнике — это датчик оттайки, используемый для отключения нагревателей испарителя в холодильниках No Frost. Таким образом, дефростер является неотъемлемой частью системы Ноу-Фрост.
Принцип работы дефростера
Опишем принцип функционирования дефростера на примере рабочего цикла холодильника.
Холодильник включен в сеть, запущен компрессор. На испарителе постепенно намораживается иней. При опущении температуры в камере до – 7 оС компрессор останавливается (реагирует термостат). Спустя некоторое время срабатывает таймер оттайки испарителя, давая сигнал к запуску нагревателя. Нагреватель оттаивает испаритель, его температура повышается до тех пор, пока не сработает дефростер. И так далее по кругу.
Для чего используется
Функция дефростера — регулировка оттайки испарителя. При достижении определенной температуры радиатора испарителя датчик размыкает цепь, отключая нагреватель и предохраняя его от перегрева. Проще говоря, в тепле дефростер разомкнут, в холоде — замкнут.
Где находится в холодильнике
Раз дефростер является частью No Frost, его местоположение нужно искать непосредственно в этой системе: датчик монтируется на испаритель.
Поломка дефростера
О неисправности дефростера может свидетельствовать некорректная работа системы No Frost. Если морозилка регулярно обрастает шубой, есть смысл задуматься о профессиональной диагностике холодильника, в противном случае, вы будете вынуждены постоянно размораживать холодильник вручную (примерно, раз в неделю). При неисправности дефростера теряет смысл вся система Ноу-Фрост.
Как показывает практика, проблемы с дефростером чаще всего встречаются у холодильников Daewoo, Stinol и Ariston. Сам дефростер не ремонтируется. При выявлении дефекта он подлежит обязательной замене.
Схемы холодильников Ariston
Принципиальная электрическая схема холодильника Hotpoint Ariston MB 2185 NF.019
L – фаза, N- нейтраль, TH1- терморегулятор холодильной камеры, TH2 -терморегулятор морозильной камеры RH1 – тепловое реле компрессора, RA1 – пусковое реле компрессора, SL1- индикаторная лампа холодильной камеры,SL2 — индикаторная лампа морозильной камеры, IL1 – выключатель лампы, L1- лампа освещения холодильного отделения, TIM – таймер, TR – TR тепловое реле тэна испарителя, TF- плавкий предохранитель, CO1- компрессор холодильной камеры, СО2 — компрессор морозильной камеры, R1- тэн испарителя, R2- тэн поддона каплепадения, RA2 -пусковое реле компрессора, RH2- тепловое реле компрессора
Принципиальная электрическая схема холодильника Hotpoint Ariston HBM 1181.2F